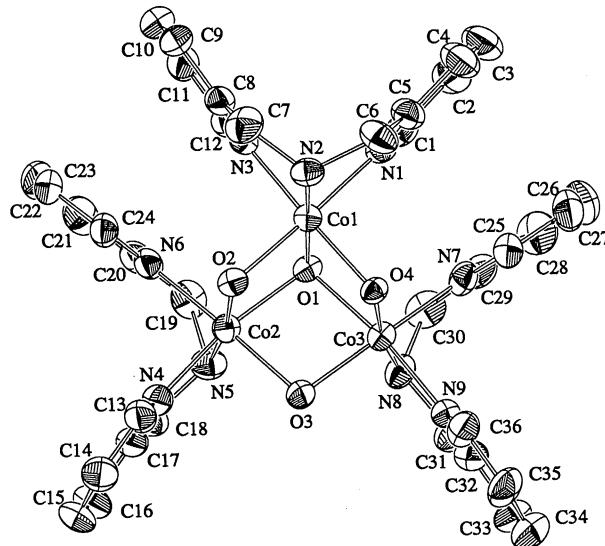


Trinuclear Cobalt(III) Complex Having Partial Cubane Co_3O_4 Core: Synthesis and Structural Analysis of the Complex Containing Bis(2-pyridylmethyl)amine

Tomoharu Ama,* Ken-ichi Okamoto,† Toshiaki Yonemura, Hiroshi Kawaguchi, Yoshiko Ogasawara, and Takaji Yasui

Department of Chemistry, Faculty of Science, Kochi University, Akebono-cho, Kochi 780


†Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

(Received October 3, 1996)

The trinuclear cobalt(III) complex with the partial cubane Co_3O_4 core, $[\text{Co}_3(\text{dpa})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^{4+}$ (dpa: bis(2-pyridylmethyl)amine), was prepared and the structure was determined by the X-ray diffraction method. Though the partial cubane structure was slightly distorted by the $\text{N}-\text{H} \leftrightarrow \text{H}-\text{N}$ repulsive interaction, this complex is stable at least 5 days in its neutral aqueous solution.

The Mn complexes with Mn_4O_4 core are of interest in connection with the photosynthetic water oxidation center (WOC) in green plants, though the arrangements of the metal ions in the water oxidation centers are currently unclear.¹ Recently, the extension of the WOC modeling studies to the cobalt complexes with cubane and partial cubane cores gives important information for understanding of the mechanism of the oxidation. However, there are only few reports about preparations of these types of cobalt complexes.²⁻⁵ In the previous letter, we reported the preparation and the structure of one of the isomers of $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ (edma: ethylenediamine-*N*-acetate) which have Co_3O_4 partial cubane cores.⁵ In the $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ isomers, the partial cubane structures were stabilized by the intramolecular hydrogen bonds between the amino group on one of the three cobalt atoms and the carboxyl group on another cobalt atom. It is expected that the attractive interactions arising from the stacking of pyridyl rings also stabilize the polynuclear structure as the hydrogen bonds do: it may be possible to isolate the $[\text{Co}_3(\text{dpa})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ (complex 1) (dpa: bis(2-pyridylmethyl)amine), if the stabilization arising from the stacking of pyridyl rings is effectively strong to overcome the repulsive interaction arising from the two neighboring N-H's in the trinuclear structure. From these expectations, we have attempted to prepare the $[\text{Co}_3(\text{dpa})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$. We report here on the results of the attempts, that is, isolation and determination of the crystal structure of $[\text{Co}_3(\text{dpa})_3(\mu\text{-OH})_3(\mu_3\text{-O})](\text{S}_2\text{O}_6)_2 \cdot 7\text{H}_2\text{O}$.

The complex was prepared by the method described below. To a solution containing 2.4 g of $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$ and 2.0 g of dpa in 5 cm³ of water, 0.2 M (M: mol dm⁻³) KOH aqueous solution was added till the precipitation of $\text{Co}(\text{OH})_2$ began to appear. Air was bubbled through the solution for 12 h, the precipitate which appeared was filtered off, and the filtrate was charged on an SP-Sephadex column (K^+ form, ϕ 4.7 cm \times 5 cm). After the charged column was swept with 0.2 M KCl in order to elute out the pink and orange bands containing undesirable mononuclear complexes, the adsorbed band was developed with 0.5 M KCl. The major brown band was transferred to another SP-Sephadex column (K^+ form, ϕ 4.7 cm \times 90 cm) and chromatographed recyclically with 0.5 M KCl. The band was separated into one major brown and three minor bands. The eluate from the major band was evaporated to dryness under reduced pressure. The desired brown complex was extracted with methanol, and a crude

Figure 1. ORTEP drawing of the $[\text{Co}_3(\text{dpa})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ cation in complex 1; selected bond distances (Å) and bond angles (°): Co1—O1 1.898(5), Co2—O1 1.947(5), Co3—O1 1.932(5), Co1—O2 1.912(5), Co1—O4 1.906(5), Co2—O2 1.910(5), Co2—O3 1.903(5), Co3—O3 1.907(5), Co3—O4 1.902(5), Co1—N1 1.929(6), Co1—N2 1.955(6), Co1—N3 1.928(6), Co2—N4 1.941(7), Co2—N5 1.956(6), Co2—N6 1.940(6), Co3—N7 1.926(7), Co3—N8 1.967(6), Co3—N9 1.947(6), Co1—O1—Co2 95.5(2), Co2—O1—Co3 96.9(2), Co3—O1—Co1 96.0(2), Co1—O2—Co2 96.3(2), Co2—O3—Co3 99.3(2), Co3—O4—Co1 96.7(2), O1—Co1—O2 84.6(2), O1—Co1—O4 83.9(2), O1—Co2—O2 83.3(2), O1—Co2—O3 81.8(2), O1—Co3—O3 82.1(2), O1—Co3—O4 83.0(2).

complex was obtained from the concentrated methanolic solution by adding ether, which was recrystallized from water by adding acetone.⁶ The complex obtained as chloride salt was fine needle crystals and was not suitable for the X-ray crystal analysis. Therefore, we converted the chloride salt to dithionate one in the following way. To the saturated aqueous solution of the chloride, excess of sodium dithionite was added in solid. The deposited crystals of the dithionate complex appeared were filtered and washed with cold water. Recrystallization was carried out from hot water (complex 1);⁷ this recrystallized dithionate was analyzed by the X-ray diffraction method.⁸

A perspective view of the $[\text{Co}_3(\text{dpa})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ cation in complex 1 is illustrated in Fig. 1. The coordinations around cobalt(III) atoms are roughly octahedral. It is clear from the figure that the complex ion contains the partial cubane Co_3O_4 core. That is, the Co—O₂, Co—O₃, and Co—O₄ distances are in the range 1.903 ~ 1.912 Å; the O₂, O₃, and O₄ atoms ($\mu\text{-OH}$) span two independent Co atoms. The O₁ atom ($\mu_3\text{-O}$) bridges three Co atoms, however, the Co₂—O₁ and Co₃—O₁ distances (1.947 and 1.932 Å) are longer than the Co₁—O₁ (1.898 Å) and

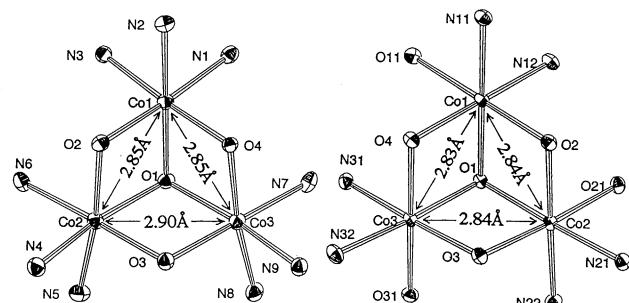


Figure 2. Structures of the partial cubane Co_3O_4 cores; A: complex 1, and B: $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ (T1 isomer).⁵

the $\text{Co}-\mu_3\text{-O}$ distances reported in the previous letter ($1.899 \sim 1.923 \text{ \AA}$)⁵

The three four-membered rings, $\text{Co}_1\text{-O}_1\text{-Co}_2\text{-O}_2$, $\text{Co}_1\text{-O}_1\text{-Co}_3\text{-O}_4$, $\text{Co}_2\text{-O}_1\text{-Co}_3\text{-O}_3$, are approximately planar, however, the planes are deviated from the regular square. The $\text{Co}-\text{O}-\text{Co}$ angles are larger than 90° ; the deviation from 90° is larger in $\text{Co}_2\text{-O}_3\text{-Co}_3$ (99.3°) than in the other $\text{Co}-\text{O}-\text{Co}$ ($95.5 \sim 96.9^\circ$). The $\text{O}-\text{Co}-\text{O}$ angles in the approximate planes are smaller than the 90° and in the range $81.8 \sim 84.86^\circ$. These values are also in agreement with those of the corresponding angles in the trinuclear $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ ion (T1 isomer)⁵ and dinuclear $[\text{Co}(\text{edda})\text{Co}(\text{en})_2(\mu\text{-OH})_2]^{2+}$ ion.⁹ The $\text{Co}_2\text{-Co}_3$ distance (non-bonding) is 2.90 \AA and larger than the $\text{Co}_1\text{-Co}_2$ and $\text{Co}_1\text{-Co}_3$ distances (ca. 2.85 \AA) and also larger than the $\text{Co}-\text{Co}$ distances observed in the $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ ion which has a partial cubane core ($2.83 \sim 2.84 \text{ \AA}$; Fig. 2). The $\text{N}_5\text{-H}$ distance is 3.58 \AA and much larger than the $\text{N}_1\text{-H}$ (3.09 \AA) and $\text{N}_3\text{-H}$ (3.11 \AA). These results suggest that the $\text{N}_5\text{-H}$ and $\text{N}_8\text{-H}$ repulsively interact to each other.

The core Co_3O_4 structure of the complex 1 is slightly distorted from the regular cubane structure as mentioned above. However, the distortion is not so significant because of the absence of the extra ligands as observed in $[\text{Co}_3\text{O}_3(\text{OH})_3(\text{OAc})_2(\text{bpy})_3]^{2+}$ ² where the extra μ_2 -acetato ligands distorted the regular structure so much.

The ^{13}C NMR spectrum in D_2O ⁷ showed that complex 1 has three kinds of pyridylmethyl groups, which suggests that the partial cubane structure with a mirror plane including N_2 , Co_1 , O_1 , and O_3 atoms restored in the D_2O solution (in the crystal cell, the complex molecule defects from the mirror plane by the requirement of crystal packing) and that this complex was not hydrolyzed to mononuclear complexes during the ^{13}C NMR measurement.

The UV and visible absorption spectrum of this complex

showed the clear first $d-d$ absorption band at ca. 18500 cm^{-1} , while the second $d-d$ band appeared as a vague shoulder at ca. 23000 cm^{-1} beside the characteristic strong band arising from $\text{Co}(\mu\text{-OH})\text{Co}$ moiety ($29000 \sim 37000 \text{ cm}^{-1}$) in a similar manner to the $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ isomer which has the Co_3O_4 core.⁵ The neutral aqueous solution did not show the spectral change for several days. This observation also suggests that this complex was not hydrolyzed so easily in the neutral aqueous solution. Accordingly, it is reasonable to suppose that the trinuclear structure of complex 1 is stabilized by the stacking of the pyridyl rings, of which stabilization overcome the instability caused by the $\text{N}_5\text{-H} \leftrightarrow \text{H}-\text{N}_8$ repulsion. The spectrum of complex 1 also did not exhibits a obvious time-course change in the pH 11 solution. However, in the pH 1 solution, it exhibited a obvious and faster spectral change than the $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ whose Co_3O_4 structure is fully stabilized by the three $\text{N}-\text{H}\cdots\text{O}$ intramolecular hydrogen-bonds; accordingly, complex 1 is less stable than the $[\text{Co}_3(\text{edma})_3(\mu\text{-OH})_3(\mu_3\text{-O})]^+$ and suitable for the study on the reaction mechanism of the complex having the Co_3O_4 core.

References and Notes

- 1 D. F. Ghanotakis and C. F. Yocom, *Annu. Rev. Plant Physiol. Mol. Biol.*, **41**, 255 (1990).
- 2 K. Dimitrou, K. Folting, W. E. Streib, and G. Christou, *J. Am. Chem. Soc.*, **115**, 6432 (1993).
- 3 K. Dimitrou, K. Folting, W. E. Streib, and G. Christou, *J. Chem. Soc., Chem. Commun.*, **1994**, 1385.
- 4 K. Dimitrou, J. Sun, K. Folting, and G. Christou, *Inorg. Chem.*, **34**, 4160 (1995).
- 5 T. Ama, J. Miyazaki, K. Hamada, K. Okamoto, T. Yonemura, H. Kawaguchi, and T. Yasui, *Chem. Lett.*, **1995** 267.
- 6 Anal. Found: C, 37.51; H, 5.19; N, 10.78%. Calcd for $[\text{Co}_3(\text{dpa})_3(\text{OH})_3(\text{O})]\text{Cl}_4 \cdot 9.5\text{H}_2\text{O}$ ($\text{C}_{36}\text{H}_{61}\text{N}_9\text{O}_{13.5}\text{Cl}_4\text{Co}_3$): C, 37.45; H, 5.32; N, 10.92%.
- 7 Anal. Found: C, 33.00; H, 4.41; N, 9.68%. Calcd for $[\text{Co}_3(\text{dpa})_3(\text{OH})_3(\text{O})](\text{S}_2\text{O}_6)_2 \cdot 7\text{H}_2\text{O}$ ($\text{C}_{36}\text{H}_{56}\text{N}_9\text{O}_{23}\text{S}_4\text{Co}_3$): C, 33.57; H, 4.38; N, 9.79%. ^{13}C NMR in D_2O : δ 59.87, 60.42, 61.79, 121.85, 123.01, 124.51, 125.18, 125.70, 126.06, 140.09, 140.76, 141.624, 148.47, 148.83, 150.55, 161.95, 163.77, 163.78.
- 8 Crystallographic data of 1: formula $\text{C}_{36}\text{H}_{56}\text{N}_9\text{O}_{23}\text{S}_4\text{Co}_3$, F.W. = 1287.92, monoclinic, $P 2_1/n$ (No. 14), $a = 13.021(3)$, $b = 19.972(4)$, $c = 19.691(3) \text{ \AA}$, $\beta = 96.15(2)^\circ$, $V = 5091(1) \text{ \AA}^3$, $Z = 4$, $D_{\text{calc}} = 1.680 \text{ g cm}^{-3}$, unique reflections = 7761 ($I > 3\sigma(I)$), $R = 0.069$ ($R_w = 0.075$).
- 9 K. Okamoto, J. Hidaka, T. Ama, and T. Yasui, *Acta Crystallogr., Sec.C*, **C47**, 2099 (1991).